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Improving Software Productivity 

Barry W. Boehm, TRW 
 
 

Computer hardware productivity continues to increase by leaps and 
bounds, while software productivity seems to be barely holding its own. Central 
processing units, random access memories, and mass memories improve their 
price-performance ratios by orders of magnitude per decade, while software 
projects continue to grind out production-engineered code at the same old rate of 
one to two delivered lines of code per man-hour. 

 
Yet, if software is judged by the same standards as hardware, its 

productivity looks pretty good. One can produce a million copies of Lotus 1-2-3 
at least as cheaply as a million copies of the Intel 286. Database management 
systems that cost $5 million 20 years ago can now be purchased for $99.95. 

 
The commodity for which productivity has been slow to increase is 

custom software. Clearly, if you want to improve your organization’s software 
price-performance, one major principle is “Don’t build custom software where 
mass-produced software will satisfy your needs.” However, even with custom 
software, a great deal is known about how to improve its productivity, and even 
increasing productivity by a factor of 2 will make a significant difference for most 
organizations. 

 
This article discusses avenues of improving productivity for both custom 

and mass-produced software. Its main sections cover the following topics: 
 

• The importance of improving software productivity: some national, 
international, and organizational trends indicating the significance of 
improving software productivity. 

• Measuring software productivity: some of the pitfalls and paradoxes in 
defining and measuring software productivity and how best to deal 
with them. 

• Analyzing software productivity: identifying factors that have a strong 
productivity influence and those that have relatively little influence, 
using such concepts as software productivity ranges, the software 
value chain, and the software productivity opportunity tree. 

• Improving software productivity: using the opportunity tree as a 
framework for describing specific productivity improvement steps and 
their potential payoffs. 

• Software productivity trends and conclusions. 
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The importance of improving software productivity 
 

The major motivation for improving software productivity is that software 
costs are large and growing larger. Thus, any percentage savings will be large and 
growing larger as well Figure 1 shows recent and projected software cost trends in 
the United States and worldwide. In 1985, software costs totaled roughly $11 
billion in the US Department of Defense, $70 billion in the United States overall, 
and $140 billion worldwide. If present software cost growth rates of 
approximately 12 percent per year continue, the 1995 figures will be $36 billion 
for the DoD, $225 billion for the United States, and $450 billion worldwide. 
Thus, even a 20 percent improvement in software productivity would be worth 
$45 billion in 1995 for the United States and $90 billion worldwide. Gains of such 
magnitude are clearly worth a serious effort to achieve. 

 

 
Figure 1. Software cost trends. 

 
Software costs are increasing not because people are becoming less 

productive but because of the continuing increase in demand for software, Figure 
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2, based on Boehm1 and a recent TRW-NASA Space Station software study, 
shows the growth in software demand across five generations of the U.S. manned 
space flight program. from about 1,500,000 object instructions to support Project 
Mercury in 1962–63 to about 80,000,000 object instructions to support the Space 
Station in the early 1990’s. 
 

 
Figure 2. Growth in software demand: US manned spaceflight program. 
 

The reasons for this increased demand are basically the same ones 
encountered by other sectors of the economy as they attempt to increase 
productivity via automation. The major component of growth in the Space Shuttle 
software has been the checkout and launch support area, in which NASA 
automated many functions to reduce the number of people needed to support each 
launch—as many as 20,000 in previous manned spaceflight operations. The result 
has been a significant reduction in required launch support personnel but a 
significant increase in the required amount of software. 

 
Many organizations have software demand growth curves similar to 

Figure 2. A large number of organizations simply cannot handle their increased 
demand within their available personnel and budget constraints, and they are 
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faced with long backlogs of unimplemented information processing systems and 
software improvements. For example, the U.S. Air Force Standard Information 
Systems Center has identified a four-year backlog of unstarted projects 
representing user-validated software needs. This type of backlog serves as a major 
inhibitor of a software user organization’s overall productivity, competitive-ness, 
and morale. Thus, besides cost savings, another major motivation for improving 
software productivity is to break up these software logjams. 
 
 
Measuring software productivity 
 

The best definition of the productivity of a process is 
 

process by the consumed Inputs
process by the produced Outputs

 =ty Productivi  

 
Thus, we can improve the productivity of the software process by increasing its 
outputs, decreasing its inputs, or both. However, this means that we need to 
provide meaningful definitions of the inputs and outputs of the software process. 
 

Defining inputs. For the software process, providing a meaningful 
definition of inputs is a nontrivial but generally workable problem. Inputs to the 
software process generally comprise labor, computers, supplies, and other support 
facilities and equipment. However, one has to be careful which of various classes 
of items are to be counted as inputs. For example: 
 

• Phases (just software development, or should we include system 
engineering, soft-ware requirements analysis, installation, or 
postdevelopment support?) 

• Activities (to include documentation, project management, facilities 
management, conversion, training, database administration?) 

• Personnel (to include secretaries, computer operators, business 
managers, contract administrators, line management?) 

• Resources (to include facilities, equipment, communications, current 
versus future dollar payments?) 

 
An organization can usually reach an agreement on which of the above are 

meaningful as inputs in their organizational context. Frequently, one can use 
present-value dollars as a uniform scale for various classes of resources. 
 
 

Defining outputs. The big problem in defining software productivity is 
defining outputs. Here we find a paradox. Most sources say that defining 
delivered source instructions (DSI) or lines of code as the output of the software 
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process is totally inadequate, and they argue that there are a number of 
deficiencies in using DSI. However, most organizations doing practical 
productivity measurement still use DS1 as their primary metric. 

 
DSI does have the following deficiencies as a software productivity 

metric: 
 

(1) It is too low-level for some purposes, particularly for software cost 
estimation, where it is often difficult to estimate DSI in advance. 

 
(2) It is too high-level for some purposes because complex instructions or 

complex combinations of instructions receive the same weight as a sequence of 
simple assignment statements. 

 
(3) It is not a uniform metric; lines of machine-oriented language (MOL), 

higher-order language (HOL), and very high level language (VHLL) are given the 
same weight. For example, completing an application in one man-month and 100 
lines of VHLL (100 DSI/MM) should not be considered less productive than 
doing the same application in two man-months and 500 lines of HOL (250 
DSI/MM). 

 
(4) It is hard to define well, particularly in determining whether to count 

comments, nonexecutable lines of code, reused code, or a “line” as a card image, 
carriage return, or semicolon. For example, putting a compact Ada program 
through a pretty printer will frequently triple its number of card images. 

 
(5) It is not necessarily well correlated with value added, in that 

motivating people to improve productivity in terms of DSI may tempt them to 
develop a lot of useless lines of code. 

 
(6) It does not reflect any consideration of software quality; “improving 

productivity” may tempt people to produce faster but sloppier code. 
 

A number of alternatives to DSI have been advanced: 
 

• “Software science” or program information-content metrics 
• Design complexity metrics 
• Program-external metrics, such as number of inputs, outputs, inquiries, 

files interfaces, or function points, or a linear combination of those 
five quantities2 

• Work transaction metrics 
 

Comparing the effectiveness of these productivity metrics to a DSI metric, 
the following conclusions can be advanced: each has advantages over DSI in 
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some situations, each has more difficulties than DSI in some situations, and each 
has equivalent difficulties to DSI in relating software achievement units to 
measures of the software’s value added to the user organization. 

 
As an example, let us consider function points, which are defined as 

 
FPs   = 4 x #Inputs + 5 x #Outputs + 4 x #Inquiries + 10 x #Masterfiles +  

7 x #Interfaces, 
 
where #Inputs means “number of inputs to the program,” and so on for the other 
terms. 
 

Function points offer some strong advantages in addressing problems 1 
(too low-level) and 3 (nonuniformity) above. One generally has a better early idea 
of the number of program inputs, outputs, and so on, and the delivered software 
functionality has the same numeric measure whether the application is 
implemented in an MOL, HOL, or VHLL. However, function points do not 
provide any advantage in addressing problems 5 and 6 (value added and quality 
considerations), and they have more difficulties than DSI with respect to problems 
2 and 4 (too high-level and imprecise definition). The software functionality 
required to transform an input into an output may be very trivial or very 
extensive. And we still lack a set of well-rationalized, unexceptionable standard 
definitions for number of inputs, number of outputs, and other terms that are 
invariant across designers of the same application. For example, some 
experiments have shown an order-of-magnitude variation in estimating the 
number of inputs to an application. 

 
However, function points have been successfully applied in some limited, 

generally uniform domains such as small-to-medium-sized business applications 
programs. A number of activities are also under way to provide more standard 
counting rules and to extend the metric to better cover other software application 
domains. 

 
Thus, no alternative metrics have demonstrated a clear superiority to DSI. 

And DSI has several advantages that induce organizations to continue to use DSI 
as their primary software productivity output metric: 
 

• The DSI metric is relatively easy to define and discuss unambiguously. 
• It is easy to measure. 
• It is conceptually familiar to software developers. 
• It is linked to most familiar cost estimation models and rules of thumb 

for productivity estimation. 
• It provides continuity from many organizations’ existing database of 

project productivity information. 
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Software productivity-quality interactions. As discussed above, we 
want to define productivity in a way that does not compromise a project’s concern 
with software quality. The interactions between software cost and the various 
software qualities (reliability, ease of use. ease of modification. portability, effi-
ciency, etc.) are quite complex, as are the interactions between the various 
qualities them-selves. Overall, though, there are two primary situations that create 
significant interactions between software costs and qualities: 
 

(1) A project can reduce software development costs at the expense of 
quality but only in ways that increase operational and life-cycle costs. 

(2) A project can simultaneously reduce software costs and improve 
software quality by intelligent and cost-effective use of modern software 
techniques. 
 

One example of situation 1 was provided by a software project experiment 
in which several teams were asked to develop a program to perform the same 
function, but each team was asked to optimize a different objective. Almost 
uniformly, each team finished first on the objective they were asked to optimize, 
and fell behind on the other objectives. In particular, the team asked to minimize 
effort finished with the smallest effort to complete the program, but also finished 
last in program clarity, second to last in program size and required storage, and 
third to last in output clarity. 

 
Another example is provided by the COCOMO database of 63 

development projects and 24 evolution or maintenance projects1. This analysis 
showed that if the effects of other factors such as personnel, use of tools, and 
modern programming practices were held constant, then the cost to develop 
reliability-critical software was almost twice the cost of developing minimally 
reliable software. However, the trend was reversed in the maintenance projects; 
low-reliability software required considerably more budget to maintain than high-
reliability software. Thus, there is a “value of quality” that makes it generally 
undesirable in the long run to reduce development cost at the expense of quality. 

 
Certainly, though, if we want better software quality at a reasonable cost, 

we are not going to hold constant our use of tools, modern programming 
practices, and better people. This leads to situation 2, in which many 
organizations have been able to achieve simultaneous improvements in both 
software quality and productivity. For example, the extensive Guide, Inc., survey 
of about 800 user installations found that the four most strongly experienced 
effects of using modem programming practices were code quality, early error 
detection, programmer productivity, and maintenance time or cost. Also, the 
COCOMO life-cycle data analysis indicated that the use of modern programming 
practices had a strong positive impact on development productivity but an even 
stronger positive impact on maintenance productivity. 
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However, getting the right mix of the various qualities (reliability, 

efficiency, ease of use, ease of change, etc.) can be a very complex job. Several 
studies have explored these qualities and their interactions. Also, several new 
approaches have had some success in providing methods for reconciling and 
managing multiple quality objectives, such as Gilb’s design by objectives and the 
Goals approach (Boehm,1 Chapter 3). For pointers to additional information on 
these and other topics covered in this article, see the “Further Reading” section. 
 

Metrics: The current bottom line. The current bottom line for most 
organizations is that delivered source instructions per project man-month 
(DSI/MM) is a more practical productivity metric than the currently available 
alternatives. To use DSI/MM effectively, though, it is important to establish a 
number of measurement standards and interpretation guidelines, including 
 

• Objective, well-understood counting rules defining which project-
related man-months are included in MM; 

• Objective, well-understood counting rules for source instructions 
• A definition of delivered in terms of compliance with a set of software 

quality standards; 
• Definition and tracking of the language level and extent of reuse of 

source instructions, along with interpretation guidelines encouraging 
the use of VHLLs, HOLs, and reused software. 

 
Examples of such definitions are given by Boehm1 and by Jones.2
 

In addition, because new metrics such as function points have been 
successful in some areas, many organizations are also experimenting with their 
use, refinement, and extension to other areas. 
 
 
Analyzing software productivity 
 
We can consider two primary ways of analyzing software productivity: 
 

(1) The “black-box” or influence-function approach, which performs 
comparative analyses on the overall results of a number of entire software 
projects, and which tries to characterize the overall effect on software productivity 
of such factors as team objectives, methodological approach, hardware 
constraints, turnaround time, or personnel experience and capability. 
 

(2) The “glass-box” or cost-distribution approach, which analyzes one or 
more soft-ware projects to compare their internal distribution between such costs 
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as labor and capital, code and documentation, development and maintenance, and 
other cost distributions by phase or activity. 
 

Here, we will concentrate on two representative approaches: the black-box 
productivity range and the glass-box value chain. 
 

Software productivity ranges.  Most software cost estimation models 
incorporate a number of software cost driver factors: 
attributes of a software project or product that affect the project’s productivity in 
(appropriately defined) DSI/MM. A significant feature of some of these models is 
the productivity range for a software cost driver: the relative multiplicative 
amount by which that cost driver can influence the software project cost estimated 
by the model. An example of a set of recently updated productivity ranges for the 
COCOMO models is shown in Figure 3. 
 

 
Figure 3. Cocomo software life-cycle productivity ranges, 1985. 
 

These productivity ranges show the relative leverage of each factor on 
one’s ability to reduce the amount of effort required to develop a software 
product. For example, assuming all the other factors are held constant, developing 
a software product in an unfamiliar programming language will typically require 
about 20 percent more man-months than using a very familiar language. 
Similarly, developing a product with a mediocre (15th-percentile) team of people 
will typically require over four times as many man-months as with a 90th-
percentile team of people. The open-ended bar at the bottom of Figure 3 indicates 
that the number of man-months required to develop a software product increases 
without bound as one increases the number of instructions developed. 
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Some initial top-level implications of the productivity ranges are 

summarized as follows; more detailed implications will be discussed in the 
“Improving Software Productivity” section later in this article. 
 

• Number of source instructions. The most significant influence on 
software costs is the number of source instructions one chooses to program. This 
leads to cost reduction strategies involving the use of fourth-generation languages 
or reusable components to reduce the number of source instructions developed, 
the use of prototyping and other requirements analysis techniques to ensure that 
unnecessary functions are not developed, and the use of already developed 
software products. 

 
• Management of people. The next most significant influence by far is that 

of the selection, motivation, and management of the people involved in the 
software process. In particular, employing the best people possible is usually a 
bargain, because the productivity range for people usually is much wider than the 
range of people’s salaries. 

 
• Fixed features of the product. Some of the factors, such as product 

complexity, required reliability, and database size, are largely fixed features of the 
software product and not management controllables. Even here, though, 
appreciable sayings can be achieved by reducing unnecessary complexity and by 
focusing on appropriate life-cycle cost-reliability trade-offs as discussed in the 
preceding section. 

 
• Other, management-controllable factors. The other cost driver factors 

are generally management controllables: requirements volatility, hardware speed 
and storage constraints, use of software tools and modem programming practices, 
and so on can be directly factored into a productivity improvement effort. 
 

Some primary productivity improvement strategies involving these cost 
driver variables are described later. See Boehm1, Chapter 33, for a discussion of 
each cost driver and Boehm et al.3 for an example of their successful application 
to an integrated soft-ware productivity improvement program. 
 

The software product value chain. The value chain, developed by Porter 
and his associates at the Harvard Business School4, is a useful method of 
understanding and controlling the costs involved in a wide variety of 
organizational enterprises. It identifies a canonical set of cost sources or value ac-
tivities, representing the basic activities an organization can choose from to create 
added value for its products. Figure 4 shows a value chain for software 
development representative of experience at TRW. Definitions and explanations 
of the component value activities are given by Porter4. 
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Figure 4. Typical software development value chain. 

 
For software, the largest single value chain element is Operations, which 

covers activities associated with transforming inputs into the final product form 
and typically involves roughly four-fifths of the total development outlay. In such 
a case, the value chain analysis involves breaking up a large component into 
constituent activities. Figure 4 shows such a breakup of Operations into 
management (7 percent), quality assurance and con-figuration management (5 
percent), and the distribution of technical effort among the various development 
phases. This phase breakdown also covers the cost sources due to rework. Thus, 
for example, of the 20 percent overall cost of the technical effort during the 
integration and test phase; 13 percent is devoted to activities required to rework 
deficiencies in or reorientations of the requirements, design, code, or 
documentation; and the other 7 percent represents the amount of effort required to 
run tests, perform integration functions, and complete documentation even if no 
problems were detected in the process. 

 
For simplicity, the service and margin components of the value chain have 

not been assigned numerical values. “Margin” basically represents profits; 
“service” represents postdevelopment software support activities, often called 
“maintenance” but more properly called “evolution. “ Evolution costs are 
typically 70 percent of software life-cycle costs, but since some initial analyses 
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have indicated that the detailed value-chain distribution for evolution costs is not 
markedly different from the distribution of development costs in Figure 4, we will 
use Figure 4 to represent the distribution of software life-cycle costs. 

 
The primary implication of the software development value chain is that 

the Operations component is the key to significant improvements. Not only is it 
the major source of software costs, but also most of the remaining components 
such as human resources will scale down in a manner roughly proportional to the 
scaling down of Operations cost. 

 
Another major characteristic of the value chain is that virtually all of the 

components are still highly labor intensive. Thus, there are significant 
opportunities for providing automated aids to make these activities more efficient 
and capital intensive. Further, it implies that human resource and management 
activities aimed at getting the best from peopie have much higher leverage than 
their 3 percent and 7 percent investment levels indicate. 

 
The breakdown of the Operations component indicates that the leading 

strategies for cost savings in software development involve 
 

• making individual steps more efficient via such capabilities as 
automated aids to software design analysis or testing; 

• eliminating steps via such capabilities as automatic programming or 
automatic quality assurance; 

• eliminating rework via early error detection or via such capabilities as 
rapid prototyping to avoid later requirements rework. 

 
In addition, further major cost savings can be achieved by reducing the 

total number of elementary operations steps by developing products requiring the 
creation of fewer lines of code. This has the effect of reducing the overall size of 
the value chain itself. This source of savings breaks down into two main options: 
 

• Building simpler products by applying more insight to front-end 
activities such as prototyping or risk management; 

• Reusing software components via such capabilities as fourth-
generation languages or component libraries. 

 
The software productivity improvement opportunity tree. This 

breakdown of the major sources of software cost savings leads to the software 
productivity improvement opportunity tree shown in Figure 5. This hierarchical 
breakdown helps us to understand how to fit the various attractive productivity 
options into an overall integrated software productivity improvement strategy. 
The next section will discuss each of these major options in turn. 
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Figure 5. Software productivity improvement opportunity tree. 
 
 
Improving software productivity 
 

Following the organization of the software productivity opportunity tree, 
we will cover the following primary options for improving software productivity: 
(1) getting the best from people, (2) making steps more efficient, (3) eliminating 
steps, (4) eliminating rework, (5) building simpler products, and (6) reusing 
components. 
 

Getting the best from people. As indicated in the opportunity tree, there 
are three primary options available for getting the best from people: staffing, 
facilities, and management. 
 



www.manaraa.com

 
Staffing. The productivity ranges in Figure 3 show a factor of 4.18 in 

productivity difference due to personnel/team capability and a combined factor of 
2.52 for relative experience with the applications area, computer system or virtual 
machine, and programming language. Similar ranges have been determined by 
other studies such as the IBM productivity analysis (see Walston and Felix5). 

 
Thus, if you want to increase your project’s or organization’s software 

productivity, one of the biggest leverage actions you have at your disposal is to 
get the best people working for your project or organization and the mediocre 
people working for someone else. It is worth making a significant effort to get this 
to happen. But it is remarkable how frequently managers are passive about key 
staffing decisions and how frequently they go in the opposite direction, saying 
things like 
 

“I can’t afford those high-salary people.” 
“1 can’t take a risk on somebody so expensive.” 
“I can’t hire your superstar until your project gets its funds, even though 
that’s only a month away.” 
“Joe has all these unassigned people charging to standby, and I have to 
help him out.” 
“I can’t wait. I need somebody to show some progress on this task by next 
week.” 

 
Sometimes, the latter two situations require you to respond, but you can generally 
make it a temporary rather than a permanent commitment. 
 

The other, equally important, side of the staffing coin involves committing 
yourself to phase out misfits. No matter how carefully you select the members of 
your software team, inevitably you will find some people who do not contribute 
anywhere near their fair share to the team’s objectives, even after several attempts 
to find on prepare a suitable role for them on the team. In such a situation, you 
will be tempted to postpone dealing with the problem, to profess not to notice it, 
to smooth it over with words, or to ask the other team members to do extra tasks. 
This may be the easy way out in the short run, but invariably it produces 
unhealthy results in the long run. 

 
Phasing people out isn’t easy, but if you devote enough time, thought, and 

sympathy to the problem, you can often create a situation in which the phaseout 
becomes a positive rather than a negative experience, and the person concerned 
finds a new line of work that suits him or her much better than a group-oriented 
software project. If this doesn’t work, and you are left with a definite misfit, don’t 
back away from the problem. Get rid of the misfit as quickly as possible. 
 

Facilities. Given that software development and evolution are extremely 
labor-intensive activities, a great deal of productivity leverage can be gained by 
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making software production a more capital-intensive activity. Typically, capital 
investment per software worker has been little different from the $2000–$3000 
per person typical of office workers in general. However, a number of 
organizations such as Xerox, TRW, IBM, and Bell Laboratories have indicated 
that significantly higher investments (in the $10,000–$30,000 per person range) 
have been more than recaptured in improved software productivity. 
 

Providing software personnel with private offices is another cost-effective 
measure, leading to productivity gains of roughly 11 percent at IBM-Santa Teresa 
(see Jones2) and 8 percent at TRW (Boehm et al.3). Similar results on the payoffs 
of capital investments in better facilities and support capabilities have been 
reported in other studies (see “Further Reading”). 
 

Management. Poor management can decrease software productivity more 
rapidly than any other factor. Here are some examples of the major classes of 
management activities that most frequently contribute to losses in productivity: 
 

• Poor planning. An example of poor planning was a project with very 
vague test plans. When the 20-person test team came on board, they found no test 
data, test drivers, test facilities, test strategies and procedures, or test readiness 
standards for the developers’ code. As a result, the project incurred a 30 percent 
overrun in cost and a 40 percent overrun in schedule. 

 
• Poor skill mix. Poor skill mix is often a result of the Peter Principle: “In a 

hierarchy, every employee tends to rise to his level of incompetence.” The most 
common realization of the Peter Principle in software engineering is the practice 
of “advancing” good programmers by promoting them into management. 
Sometimes this works well, but overall it produces more mismatches, frustration, 
and dam-aged careers in software engineering than in other fields. This point has 
been realized by a number of organizations, which have instituted dual or multiple 
career paths culminating in “superprogrammer” or “superanalyst” as well as 
“supermanager.” 

 
• Premature staffing. An example of premature staffing is the following 

quotation from a small-project manager: “At an early stage in the design, I was 
made the project manager and given three trainees to help out on the project. My 
biggest mistake was to burn up half of my time and the other senior designer’s 
time trying to keep the trainees busy. As a result, we left big holes in the design, 
which killed us in the end. “ A related source of decreased productivity is the 
attempt to speed up a project by adding more people, in contradiction to Brooks’s 
Law: “Adding more people to a late software project will make it later.” 

 
• Premature coding. An example of premature coding is the WISCA 

syndrome, where WISCA stands for “Why isn’t Sam coding anything?” A 
counterpart is the statement, “We’d better hurry up and start coding, because 
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we’re going to have a lot of debugging to do.” The most important management 
property of an efficient multiperson software development is the achievement of a 
set of thorough, validated, and stable module interface specifications, which allow 
the developers to operate in parallel without being swamped by interpersonal 
communications overhead. As early as 1961, software managers were realizing 
that “every sheet of accurate inter-face definition is, quite literally, worth its 
weight in gold.” 

 
• Poor reward structure. An example of poor reward structure is the 

organization that gives its top performers 6 percent raises and its mediocre 
performers 5 percent raises. Eventually, the good people get frustrated and leave. 
A great deal can be done by creative application of other rewards, such as special 
bonuses, grade-level promotions, travel and special courses, and recognition 
programs for top performers. 
 

Making steps more efficient. The value chain in Figure 4 provides a 
basic set of insights on the relative productivity leverage involved in eliminating 
or improving the efficiency of the various steps in the software process. For 
example, since the process of performing code and unit test functions consumes 
only eight percent of the software life-cycle dollar, the productivity impact of 
tools to eliminate code and unit test or to make it more efficient will not exceed 
eight percent (unless the tools also eliminate other classes of effort, such as 
rework in later phases). 

 
The primary leverage factor in making the existing software process steps 

more efficient is the use of software tools to automate the current repetitive and 
labor-intensive portions of each step. 

 
Experience to date suggests that software tools are much more effective if 

they are part of an integrated project support environment (IPSE). The primary 
features that distinguish an IPSE from an ad hoc collection of tools are 
 

• a set of common assumptions about the software process model being 
supported by the tools (or. more strongly. a particular software 
development method being sup-ported by the tools); 

• an integrated project master database or persistent object base serving 
as a unified repository of the technical and management entities 
created during the software process. along with their various versions, 
attributes, and relationships; 

• support of the entire range of users and activities involved in the 
software project. not just of programmers developing code; 

• a unified user interface providing easy and natural ways for various 
classes of project personnel (expert programmers. novice librarians. 
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secretaries. managers. planning and control personnel. etc.) to draw on 
the tools in the IPSE; 

• a critical-mass ensemble of tools. covering significant portions of 
software project activities; 

• a computer communication architecture facilitating user access to data 
and resources in the IPSE. 

 
Eliminating Step. A good many automated aids go beyond simply 

making steps more efficient, to the point of fully eliminating previous manual 
steps. If we compare software development today with its counterpart in the 
1950’s, we see that assemblers and compilers are excellent examples of ways to 
vastly improve productivity by eliminating steps. More recent examples are 
process construction systems, software standards checkers and other quality 
assurance functions, and requirements and design consistency checkers. 

 
More ambitious efforts to eliminate steps involve the automation of the 

entire programming process by providing capabilities that operate directly on a set 
of software specifications to automatically generate computer programs. There are 
two major branches to this approach: domain-specific and domain-independent 
automatic programming. 

 
The domain-specific approach gains advantages by capitalizing on domain 

knowledge in transforming specifications into programs and in constraining the 
universe of programming discourse to a relatively smaller domain. In the limit, 
one reaches the boundary with fourth-generation languages such as Visicalc, 
which are excellent automatic programming systems within a very narrow domain 
and relatively ineffective outside that domain. 

 
The domain-independent approach offers a much broader payoff in the 

long run but has more difficulty in achieving efficient implementations of larger-
scale programs. 
 

Eliminating Rework. The strongest opportunity identified by the value 
chain analysis in Figure 4 is the 30 percent productivity leverage available 
through eliminating rework. Actually, the leverage factor is probably more like 50 
percent over the life cycle. since most of the sources of rework savings (e.g., 
modern programming practices and rapid prototyping) will reduce the incidence 
of current postdevelopment software modifications (e.g., to fix residual errors or 
to finally get the requirements right) as well as making the modifications more 
efficient. 

 
The major rework opportunity areas identified in the opportunity tree in 

Figure 5 are front-end aids; knowledge-based software assistants; information 
hiding and modern programming practices, incremental development, improved 



www.manaraa.com

 
process models, and rapid prototyping. (In addition, reusing components can 
significantly reduce rework.) 
 

Front-End Aids. Software computer-aided design and requirements 
analysis tools can eliminate a great deal of rework through better visualization of 
software requirements and design specification, more formal and unambiguous 
specifications, automated consistency and completeness checking, and automated 
traceability of requirements to design. Probably the most extensive of these 
systems is the Distributed Computing Design System, which includes a system 
specification language, a software requirements specification language, a distrib-
uted-system design language, and a module description language. A number of 
commercial front-end aids are also available such as ISDOS?PSI-PSA, SADT, 
CASE, Excelerator, IDE, Cadre, and Ada Graph. Some complementary front-end 
aids include rapid simulation aids such as RSA and executable specification aids 
such as Paisley. 
 

Knowledge-Based Software Assistants. In many application areas, the 
artificial intelligence community is finding that total automation of knowledge-
intensive functions falls in the “currently too hard” category but that combinations 
of conventional and AI techniques may he used to provide useful automated assis-
tance to human experts in performing complex tasks. This is the primary 
motivation for the knowledge-based software assistant (KBSA) concept, as 
described by Green et al.6 

 
The primary benefit of a KBSA will he the elimination of much of the 

rework currently experienced on software projects due to the belated appreciation 
that a previous programming or project decision was inappropriate. A number of 
prototype KBSAs are currently under development in such areas as acquisition 
management, configuration management, problem report tracking, algorithm 
selection, data structuring, choice of reusable components, and project planning 
and control. 
 

Information hiding and other modern programming practices. In general, 
modern programming practices (MPPs) such as early verification and validation, 
modular design, top-down development, structured programming, walk-throughs 
or inspections, and software quality standards achieve their productivity leverage 
through avoidance of rework. As indicated in Figure 3, MPPs provide a 
productivity range of 1.51 during development and up to 1.92 for the life cycle of 
a large software product. 

 
A particularly powerful technique for eliminating rework is the 

information-hiding approach developed by Parnas and applied in the US Navy A-
7 project (Parnas, Clements, and Weiss).7 This approach minimizes rework by 
hiding implementation decisions within modules, thus minimizing the ripple 
effects usually encountered when software implementation decisions need to be 
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changed. The information-hiding approach can be particularly effective in 
eliminating rework during software evolution, by identifying the portions of the 
software most likely to undergo change (characteristics of workstations, input 
data formats, etc.) and hiding these sources of evolutionary change within 
modules. 

 
As an example, the current requirements may specify that a particular user 

workstation or terminal is to be used. By also identifying in the requirements the 
terminal characteristics most likely to change (line width, character set, access 
protocols, etc.), the designers can hide these details of the terminal inside a 
terminal-handler module, thus isolating the remainder of the software from the 
usual ripple effects accompanying a change in the terminal characteristics. 
 

This approach revolutionizes the concept of a requirements specification. 
Rather than being just a snapshot of a system’s software requirements at a single 
point in time, the requirements specification must also identify the most likely 
requirements evolution paths the system will experience. This also means that a 
design validation activity should address not just traceability to the current 
requirements snapshot but also how well the design accommodates the expected 
directions of change. 
 

Modern programming practices and Ada. A major initiative to embody 
modern programming practices and information hiding concepts into standard 
programming practice has been the U.S. Department of Defense’s development of 
the programming language Ada. Ada has constructs such as packages that support 
modularity, information hiding, and reuse; strong typing that avoids rework due to 
common programming errors; structured programming constructs; and a number 
of other advanced features addressing such issues as concurrency, exception 
handling, and generic programs. Getting all of these features to work together has 
strained the state of the art in compiler development, but currently a number of 
effective Ada compilers are available. 

 
Assessing the likely productivity impact of Ada is difficult because the 

Ada concept is also intended to include an overall programming and project 
environment and because most Ada capabilities are not yet fully mature. 
However, several studies have estimated the comparative life-cycle productivity 
of an Ada project and a conventional HOL project as a function of time, using as 
parameters the cost driven variables and productivity ranges of models such as 
COCOMO. The typical result of these studies has indicated an initial added cost 
of 12–30 percent for initial uses of ada, a breakeven point in the 1988–1989 time 
frame, and a long-range savings of 40–50 percent for a fully mature Ada support 
environment and development staff. 
 

Improved process models.  The leading current model of the software 
process, the waterfall model,1 tends to focus a software project toward the 
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production of a series of documents (system specification, software requirements 
specification, top-level design document, and detailed design document). When 
used in concert with thorough front-end validation activities, the waterfall 
approach is very effective in reducing rework. But, frequently, the document-
driven interpretation of the waterfall model pushes a project toward more rapid 
production of documents rather than toward thinking through critical issues. For 
example, a recently proposed government software progress reporting scheme 
focuses on the number of unresolved elements in the software requirements and 
design specifications. If a project manager wants to show rapid progress, he is 
actually tempted to work on resolving the easy elements rather than the hard ones 
on to complete the document quickly by putting in arbitrary rather than well-
reasoned specifications. 

 
An important point in this regard is that rework instances tend to follow a 

Pareto distribution: 80 percent of the rework costs typically result from 20 percent 
of the problems. Figure 6 shows some typical distributions from recent TRW 
software projects; similar trends have been indicated in other studies. The major 
implication of this distribution is that software verification and validation 
activities should focus on identifying and eliminating the specific high-risk 
problems to be encountered by a software project, rather than spreading the early 
problem elimination effort uniformly across trivial and severe problems. Even 
more strongly, this implies that a risk-driven approach to the software life cycle 
such as the spiral model (see Boehm8) is preferable to a more document-driven 
model such as the traditional waterfall model. The spiral model organizes the 
software development process into a sequence of increasingly detailed definition 
cycles. The amount of emphasis in each cycle on documentation, simulation, 
prototyping, or other definition activities is determined by the relative risk of not 
resolving key definition issues. Thus, the spinal model focuses effort on 
identification and early resolution on the 20 percent of the problems that will 
otherwise account for 80 percent of the rework costs. 
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Figure 6. Rework costs are concentrated in a few high-risk items. 
 
 

Rapid Prototyping. One of the major sources of rework found in the data 
represented by Figure 4 were portions of a software specification based on poorly 
understood mission on user interface requirements. A primary example is the user 
who says, “I can’t tell you exactly what I want, but I’ll know it when I see it.” A 
number of rapid prototyping aids have become available to improve this situation. 
A good many are based on the interpretive-execution capabilities of advanced 
artificial intelligence environments such as Interlisp. Others are based on two-
phase interactive-graphics composition and execution capabilities using 
conventional HOLs. Other rapid prototyping systems provide risk reduction 
capabilities for rapid assessment of real-time performance issues on distributed 
data processing issues. 
 

Building Simpler Products. As indicated in Figure 3, the largest 
productivity range available to the software develop-en comes from the number of 
instructions one chooses to develop. There are two primary options here: one is 
building simpler products; the other is reusing software components. 

 
Besides their contribution to eliminating rework, the last two approaches 

involving rapid prototyping and improved software process models can also be 
very effective in improving bottom-line productivity by building simpler products 
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to eliminate software gold plating: extra software that not only consumes extra 
effort but also reduces the conceptual integrity of the product. 

 
For example, a recent seven-project experiment comparing a specification-

oriented approach and a prototyping-oriented approach to the development of 
small-user-intensive application software products (see Boehm, Gray, and 
Seewaldt9) is illustrated in Figure 7. The experiment found primarily that 
 

• on the average ( P  vs S  in Figure 7), both approaches resulted in 
roughly equivalent productivity in delivered source instructions pen 
man-hour (DSI/MH); 

• the prototyping projects developed products with roughly equivalent 
performance but requiring roughly 40 percent fewer DSI and 40 
percent fewer man-hours; 

• the specifying projects had less difficulty in debugging and integration 
due to their development of good interface specifications. 
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Figure 7. Prototyping versus specifying experiment: size and effort comparisons. 
 

The final point indicates that prototypes are not a panacea for all problems 
and that specifications are still very important. However, one of the telling 
insights in this experiment was the comment of one of the participants using the 
specification approach: “Words are cheap.” During the specification phase, it is 
all too easy to add gold-plating functions to the product specification, without a 
good understanding of their effect on the product’s conceptual integrity or the 
project’s required effort. As Heckel10 writes: 
 

Most programmers … defend their use of a software feature by saying, 
“You don’t have to use it if you don’t want to, so what harm can it do?” It 
can do a great deal of harm. The user might spend time trying to 
understand the feature, only to decide it isn’t needed, or he may 
accidentally use the feature and not know what has happened or how to 
get out of the mistake. If a feature is inconsistent with the rest of the user 
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interface, the user might draw false conclusions about the other 
commands. The feature must be documented, which makes the user’s 
manual thicker. The cumulative effect of such features is to overwhelm the 
user and obscure communication with your program… 

 
A further discussion of typical sources of software gold plating and an 

approach for evaluating potential gold-plating features is provided by Boehm1, 
Chapter 11. 
  

Some of the newer software process models stimulate the development of 
simpler products. One of the difficulties of the traditional waterfall model is that 
its specification-driven approach can frequently lead one along the “Words are 
cheap” road toward gold-plated products, as discussed above. A frequent 
experience in the specification of large systems is that users with little feel for a 
computer system will overspecify on functionality and performance just to make 
sure the system will include what they need. 

 
The evolutionary development model (see McCracken and Jackson11) 

emphasizes the use of prototyping capabilities to converge on the necessary or 
high-leverage software product features essential to the user’s mission. The 
related transformational model (see Balzer, Cheatham, and Green12) shortcuts the 
problem by providing (where available) a direct transformation from specification 
to executing code, thus supporting both a specification-based and an evolutionary-
development approach. The spiral model discussed above addresses the gold-
plating problem by focusing on a continuing determination of users’ mission 
objectives and a continuing cost-benefit analysis of candidate software product 
features in terms of their contribution to mission objectives. 
 

Reusing components. Another key to improving productivity by writing 
less code is the reuse of existing software components. The simplest approach in 
this direction involves the development and use of libraries of software 
components.* A great deal of progress has been made in this direction, 
particularly in such areas as mathematical and statistical routines and operating-
system-related utilities. Further progress is possible via similar capabilities in user 
application areas. For example, Raytheon’s library system of reusable business 
application components has achieved typical figures of 60 percent reusable code 
for new applications, and typical cost savings of 10 percent in the design phase, 
50 percent in the code and test phase, and 60 percent in the maintenance phase. 
Toshiba’s system of reusable components for industrial process control has 
resulted in typical productivity rates of over 2000 source instructions pen man-
month for high-quality industrial software products. 

 

 
* There is a good deal of productivity leverage in reusing software specifications, designs, and 
plans, as well as code. 
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At this level of sophistication, such systems would better be called 

application genera-tons, rather than component libraries, because they have 
addressed several system-oriented component compatibility issues such as 
component interface conventions, data structuring, and program control and error 
handling conventions. Similar characteristics have made Unix a strong foundation 
for developing application generators. 

 
One can proceed even further in this direction to create a very high level 

language or fourth-generation language (4GL) by adding a language for 
specifying desired applications and a set of capabilities for interpreting user 
specifications, configuring the appropriate set of components, and executing the 
resulting program. Currently, the most fertile areas for 4GLs are spreadsheet 
calculators (Visicalc, Multiplan, I -2-3, etc.) and small-business systems typically 
featuring a DBMS, report generator, database query language, and graphics 
package (Nomad, Ramis, Focus, ADF, DBase II, etc.). 

 
Some 4GL advocates promise factors of 10 to 100 improvement in 

productivity from the use of4GLs. Are such factors achievable? 
 
The best experimental evidence on the productivity leverage of 4GLs is 

provided by a six-project experiment comparing the use of a third-generation 
programming language (Cobol) and a fourth-generation language (Focus) on a 
mix of small business-application projects involving both experts and beginners 
developing both simple and complex applications (see Harel and McLean13). Its 
primary findings, illustrated in Figure 8, are summarized as follows: 
 

• On an overall average (the C  and the F  in Figure 8), the fourth-
generation approach produced equivalent products to the third-
generation approach, with about 60 percent fewer DSI and 60 percent 
fewer man-hours (again with roughly equivalent productivity in 
DSI/MH). 

• From project to project, there was a significant variation in the ratio of 
third-generation to fourth-generation DSI (0.9:1 to 27:1), man-hours 
(1.5:1 to 8:1), and DSI/MH (0.5:1 to 5:1). 
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Figure 8. Fourth-generation-language experiment: size and effort comparisons. 
 

Although the average Cobol effort was 2.5 times higher than the average 
Focus effort for the same application, the effect is fan from uniform across a 
spectrum of applications. Thus, it is difficult to predict the 4GL productivity gain 
for any particular application. 

 
Guimaraes14 provides further evidence from a survey of 43 organizations 

that 4GLs reduce personnel costs, reduce user frustration, and more quickly 
satisfy user information needs within their domain of applicability. On the other 
hand, the survey found 4GLs extremely inefficient of computer resources and 
difficult to interface with conventional applications programs. Some major 
disasters have occurred in attempting to apply purely 4GL solutions to large, 
high-performance applications such as the New Jersey motor vehicle registration 
system15. 

 
Overall, though, 4GLs offer an extremely attractive option for 

significantly improving software productivity, and attempts are underway to 
create 4GL capabilities for other application areas. Short of a 4GL capability, the 
other more limited approaches to reusability such as component libraries and 
application generators can generate near-term cost savings and serve as a 
foundation for more ambitious 4GL capabilities in the long run. 
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Software productivity trends 
 

It is difficult to summarize such a welter of issues as those involved in 
improving software productivity. Figure 9 provides at least a partial summary of 
some of the key lever-age areas. It shows our typical overall progress in 
improving software productivity between the 1960–65 era and the 1980–85 era, in 
terms of equivalent machine instructions per man-month, and it projects our 
potential progress by the 1995–2000 era. 
 

 
Figure 9. Software technology and productivity trends. 
 

The horizontal dimension in Figure 9 is a qualitative scale indicating the 
breadth of the domain of applicability of a given software productivity capability. 
It reflects the fact that our most impressive software productivity achievements to 
date have been made by exploiting our knowledge of particular application 
domains. 

 
Thus, for example, even in the early 1960’s, when most large, general-

purpose systems were being developed in assembly language at a typical rate of 
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100 delivered machine instructions per man-month (DMI/MM), there were 
application generators providing productivity rates of 3000 DMI/MM and higher. 
Several examples were available in the area of rocket trajectory computation, 
where systems such as Rocket (see Boehm16) provided a library of reusable 
components (for aerodynamics, propulsion, guidance and control, earth models, 
etc.) and specialized extensions of FORTRAN for users to specify how to link 
components together to simulate their desired multistage rocket vehicle and flight 
program. 

 
By the early 1980’s, we had progressed in the power and range of domain-

specific application generators, so that even higher productivity figures were 
being achieved in such a variety of domains as spreadsheet calculations (30,000 
DMI/MM and up), industrial process control, and business fourth-generation 
languages. At the same time, we had extended our general-purpose capabilities 
from assembly language and primitive batch operating systems to HOLs with 
collections of tools providing on the order of 600 DMI/MM for large, broad-
domain applications. According to Brooks17, those capabilities address the 
elimination of the “accidental” difficulties in developing software. The domain-
specific capabilities shown on the left side of Figure 9 are aimed at reducing the 
“essential” portion of software acquisition costs. 

 
Thus, for the 1995–2000 time frame, we can see that two major classes of 

opportunities for improving software productivity exist: providing better support 
systems for broad-domain applications, involving fully integrated methods, 
environments, and modern programming languages such as Ada; and extending 
the number and size of the domains for which we can use domain-specific fourth-
generation languages and application genera-tons. Examples of promising future 
application domains include communications processing, transaction processing, 
sensor data processing, broaden process control areas such as avionics and job 
shop production control, and broader DBMS-oriented areas such as inventory 
control and production management. 

 
 
We have seen that the magnitude and continuing growth of software costs 

create a strong need to improve software productivity. This implies a need to 
carefully define software productivity, and since our current productivity metrics 
are not fully satisfactory, to work on better ones. It also implies a need to develop 
capabilities that improve not only software productivity but also software quality. 

 
The analyses of software productivity ranges and the software value chain 

led to the definition of a software productivity opportunity tree that identifies the 
major opportunity areas for improving productivity: 
 

• Getting the best from people via better management, staffing, 
incentives, and work environments. 
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• Developing and using integrated project-support environments, which 

automate portions of the development and evolution process and make 
them more efficient. 

• Eliminating rework via better front-end aids, risk management, 
prototyping, mere-mental development, and modern programming 
practices, particularly information hiding. 

• Writing less code by reusing software components, developing and 
using application generators and fourth-generation languages, and 
avoiding software gold plating. 

 
As a final conclusion, one point deserves particular emphasis. In pursuing 

improvements in software productivity, we need to be careful not to confuse 
means with ends. Improved software productivity is not an end in itself; it is a 
means of helping people better expand their capabilities to deal with information 
and to make decisions. Often, helping people to do this will involve us in 
activities (for example, spending two weeks helping someone find an effective 
nonsoftware solution to a problem) that do not add points to our software 
productivity scoreboard. At such times, we need to recall that the software 
productivity scoreboard is just one of the many ways we have to gauge our 
progress to-ward better use of computers to serve people. 
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